
HEAT CONDUCTION AND HEAT EXCHANGE IN TECHNOLOGICAL PROCESSES

ON THE INFLUENCE OF THE REINFORCEMENT
STRUCTURE OF FIBROUS SHELLS OF REVOLUTION
ON THE HEAT CONDUCTION IN THEM

Yu. V. Nemirovskii and A. P. Yankovskii UDC 536.21

The initial boundary-value problem on the heat conduction in shells reinforced with fibers of constant cross
section has been considered. It has been established that the specific, anisotropic, inhomogeneous properties
of such a shell are determined by its heat conductivity dependent on the thermophysical properties of the
phases of the composite material of the shell, the parameters of its reinforcement, and the geometry of this
shell. The ways of reducing the three-dimensional problem on heat conduction to the two-dimensional one and
the possibilities of reducing the dimension of this problem for thin shells of revolution reinforced symmetri-
cally relative to their axis by two units have been determined. The stationary temperature fields of concrete
thin shells of revolution with different Gaussian curvatures and different reinforcement structures have been
compared. It is shown that the reinforcement structure and the geometry of a shell of revolution substantially
influence the temperature distribution in this shell, which opens up a wide range of ways selecting designs of
such shells with improved thermophysical parameters.

Elements accumulating and transferring heat are widely used in modern power plants, transport systems, jet
engines of aircraft and spacecraft, laser facilities, and other apparatus. The potentialities of these elements, if they are
made of homogeneous materials, have been practically exhausted. To substantially improve their properties, it is nec-
essary to make them from composite materials with a discrete, continuous, or discrete-continuous distribution of the
thermophysical parameters and heat sources. Polyreinforced multilayer structures, the materials of whose layers and the
reinforcement phases of which have different thermophysical properties and the reinforcement trajectories in which are
curvilinear (e.g., spiral reinforcement), possess the above-indicated properties. The obtaining of such layer-fiber struc-
tures presents no problems from the technological standpoint; these structures are widely used as effective load-bearing
elements in transport systems and power plants and as elements of aircraft and spacecraft. However, the methods of
investigating the heat conductivity of the indicated structures are only in their infancy. At present, only the simplest
schemes of investigating cylindrically or spherically symmetric isotropic layered bodies [1–4] and unidirectional fibrous
composites [5] have been developed, which prevents the search for structures that would be best in thermophysical pa-
rameters.

The general form of the linear heat-conduction equation for a fibrous shell in the curvilinear coordinate sys-
tem xi (i = 1, 2, 3) is as follows [6]:
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lk1 = cos αk ,   lk2 = sin αk1 ,
(3)

in this case, the following physical restrictions are obeyed:

ωk > 0     (k = 1, 2, ..., N) ,   Ω < 1 . (4)

The most popular modern technologies of obtaining products from reinforced composites involve the use of
fibers having a constant cross section along their length; therefore, the reinforcement parameters ωk and αk cannot be
independent. The condition of constancy of the cross sections of the fibers of the kth family (kth fibers) in the curvi-
linear orthogonal coordinate system xi has the form [7]

(H2H3ωk cos αk),1 + (H1H3ωk sin αk),2 = 0 ,   k = 1, 2, ..., N . (5)

Consequently, the total system of linear heat-conduction equations for a reinforced shell or a plate includes relations
(1)–(5) that should be supplemented with initial and boundary temperature conditions [2–4], and, at the edge Sk, where
the kth fibers enter the shell, the value of the function ωk should be prescribed [7].

The heat-conductivity coefficients and heat capacity of a composite material as well as the power density of
its internal heat sources are usually assumed to be known from experiments. However, it is seen from relations (2) and
(3) that the effective heat-conductivity coefficients Λij (i, j = 1, 2, 3), the reduced heat capacity C, and the reduced
power density of the internal heat sources W of a composite fibrous material substantially depend not only on the ther-
mophysical parameters of its phases, but also on the structural parameters of a reinforcement — its direction αk and
density ωk. While the influence of the thermophysical parameters of the phases of simple composites with a rectilinear
reinforcement and the influence of the reinforcement density on the heat conductivity of these composites was investi-
gated experimentally and theoretically [5], the influence of a complex reinforcement structure of composites having a
complex geometry on their heat conduction was not investigated at all. (The material of shells with a complex rein-
forcement structure, which are usually obtained by applying a winding or by facing, possesses anisotropic and specific
inhomogeneous properties depending on the method of obtaining such a reinforced shell; this is embodied in relations
(1)–(5).) Qualitative and quantitative analyses of the indicated influence allow one to solve a number of problems aris-
ing in the process of designing products with the use of fibrous composites: to determine the region of significant in-
fluence of the reinforcement structure of a composite on its temperature field; select optimum and rational, in
thermophysical parameters, reinforcement structures; develop criteria for such structures; and so on.

Heat Conduction in Thin Shells of Revolution Reinforced Symmetrically to Their Axis. To the initial
boundary-value problem corresponds the heat-conduction equation (1) that can be integrated by different approximate
methods, e.g., the method of straight lines [8]. However, Eq. (1) is three-dimensional and the problem on the heat con-
ductivity of shells and plates is two-dimensional. The three-dimensional problem on heat conduction can be reduced to
the two-dimensional one by the Bubnov–Galerkin method. Actually, let the temperature at the "outer" face of a shell
(x3 = x3

0 > 0) be equal to T+(t, x1, x2) and the temperature of the "inner" surface (x3 = −x3
0 < 0) be equal to T−(t, x1,

x2); then, according to the Bubnov–Galerkin method, the temperature of the whole shell will be equal to
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and Eq. (1) will take the operator form

L (T) = 0 . (7)

Let us substitute representation (6) into Eq. (7) and lay down the condition that
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Integration of (8) gives the system of differential equations for the functions Tcn and Tsn that are dependent only on
the two spatial variables x1 and x2 and the time t. If the heat exchange between the shell and the environment is re-
alized through the faces of the shell by the convective Newton law

q3
+
 = µ+ (T+ − T+∞) ,   − q3

−
 = µ− (T− − T−∞) , (9)

where q3
% = q3(t, x1, x2, %x3

0) and T% = T (t, x1, x2, %x3
0), Eq. (1) is solved in the following form:
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 + ... . (10)

Let us substitute expression (10) into (7) and lay down the condition that
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 dx3 = 0 ,   n = 0, 1, 2, ... . (11)

This system should be supplemented with two boundary conditions (9) that, with allowance for the Fourier law, will
take the form

− (% Λ33
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%
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T
%∞ , (12)

where Λ33
%  = Λ33(x1, x2, %x3

0). The system of equations (11)–(12) allows one to determine the functions Tn that are
dependent on only the time and two spatial variables. This system should be supplemented with initial and boundary
conditions (conditions at the edges of the shell) represented in the form of (7) and (11).

Equations (11) and (12) for thin shells, which are used frequently as elements of power plants and other ap-
paratus, are the most simple because, in this case, the Lamé parameters Hi (i = 1, 2, 3), the power densities of the
internal heat sources in the phases ωm and ωk of a composite, the reinforcement parameters ωk and αk (k = 1, 2, ...,
N), and, consequently, the functions C, W, and λij can be considered as independent of x3 [7] and expansion (10) can
be reduced to three terms [9].
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We will consider a thin shell of constant thickness H = 2h (h = x3
0) with reinforced equidistant surfaces. Let

x3 be the distance from the middle surface of the shell (x3 = 0) to a reinforced layer; in this case, H3 = 1 m. It will
be assumed that H1, H2, and the reinforcement parameters are independent of x3 and expansion (10) includes only
three terms. Then, conditions (12) and Eq. (11), at n = 0, will take the form [6]

& Λ33 (T1 % 2hT2) = µ
%

 (T0 % hT1 + h
2
T2 − T

%∞) , (13)
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2
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where Θ = ∫
−h

h

  Tdx3 = H(T0 + h2T2/3). From equalities (13) we obtain, having expressed the functions T1 and T2 in

terms of Θ and T%∞ and having eliminated them from (14), a heat-conduction equation containing only one unknown

function Θ:
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(15)

where

A = − (µ+ + µ−) [1 ⁄ H + h (a11 − a21) ⁄ (3∆)] + (µ− − µ+) (a22 − a12) ⁄ (2∆) ;
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∆ = a11a22 − a12a21 ;   a11 = − (m+ + h) ;   a12 = − H (m+ + h ⁄ 3) ;

a21 = m− + h ;   a22 = − H (m− + h ⁄ 3) ;   m% = Λ33
 ⁄ µ% .

We may proceed analogously in the case where other boundary conditions are set on the faces of the shell:
conditions for the temperature and the heat flow or mixed conditions. For example, when heat-flow values are pre-
scribed on these surfaces (&Λ33(T1 % 2hT2) = q3

%), the heat-conduction equation will take the simpler form [6]
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(16)
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Consequently, for thin shells, the three-dimensional heat-conduction equation (1) is reduced with a sufficient accuracy
to a two-dimensional equation of the type of (15) and (16) for the one unknown function Θ dependent on only the
time t and the two spatial variables x1 and x2.

Evidently, to formulate the initial boundary-value problem corresponding to Eqs. (15) and (16), it is necessary
to integrate the initial and boundary heat conditions (set at the edges of the shell) over the thickness of the shell,
whereupon we will obtain the initial and boundary conditions for the function Θ.

The influence of the reinforcement structure on the temperature field can be most clearly demonstrated by the
example of simple composites; therefore, we will further consider only thin shells of revolution with an axially sym-
metric reinforcement of equidistant surfaces. The dimension of the problem for such composites can be decreased by
one more unit. We will consider a shell in the rectangular coordinate system y1, y2, y3, in which its rotation axis will
be coincident with the Oy1 axis; in this case, the parameter x1 will determine the distance from a point of the middle
surface to the plane y1 = 0 (x1

0 ≤ x1 ≤ x1
1) and x2 will be a polar angle in the cylindrical coordinate system related to

the rotation axis of the shell (0 ≤ x2 < 2π). Then the Lamé parameters will take the form

H1 = √1 + (R ′ (x1))
2  ,   H2 = R (x1) , (17)

and all the coefficients in equations of the type (15) and (16) will be dependent on only the variable x1.
Since the initial boundary-value problem corresponding to Eqs. (15) and (16) is linear and its solution for the

variable x2 is periodic, we will expand Θ and the known functions T%∞, q3
%, and W in a Fourier series about x2 [10]:
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Let us substitute these expansions, e.g., into Eq. (15) and select terms with cofactors cos (nx2) and sin (nx2). Then, for
each n ≥ 0, we will obtain the following systems of equations determining the functions Θ00, Θ1n, and Θ2n:

CΘ00,t = H1
−2Λ11Θ00,11 + (H1R)−1

 (RΛ11
 ⁄ H1)′ Θ00,1 +

+ AΘ00 + B+T00
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(−)

 + H 





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m
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

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CΘin,t = H1
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 ,   j = 3 − i ,   i = 1, 2 ,   n = 1, 2, 3, ... . (20)

Having expanded, by analogy with (18), the initial and boundary conditions for the function Θ, we will obtain the cor-
responding initial and boundary conditions for the functions Θ00, Θ1n, and Θ2n, which will be dependent on only one
of the variables x1 or t respectively. Evidently, the initial boundary-value problem corresponding to Eqs. (19) and (20)
is analogous to the nonstationary one-dimensional problem on heat conduction, for integration of which there are well-
developed methods [11].

If a heat action is axially symmetric, Θ = Θ00 (t, x1) and the solution of the initial boundary-value problem
on the heat conductivity of a shell is reduced to the integration of Eq. (19) at corresponding initial and boundary con-
ditions, i.e., the problem is reduced to the nonstationary, one-dimensional, heat-conduction problem. If the faces of the
shell are heat-insulated (q3

% = 0), it follows from (16) that T1 = T2 = 0 and T0 = Θ/H, i.e., it may be assumed with
an accuracy to the third order of magnitude that the temperature is constant throughout the thickness of the shell; in
this case, the coefficients in expansion (18) of the function Θ will be determined from system (19)–(20) at A = B+ =
B− = 0. In the case where a heat action is axially symmetric and the faces of the shell are heat-isolated, the heat-con-
duction equation is reduced to the form

CT,t = (H1R)−1
 (RH1

−1Λ11T,1),1 + (1 − Ω) wm +  ∑ 

k=1

N

 ωkwk , (21)

which follows from (19) and the relation T = T0 = Θ/H. In Eq. (21), all the coefficients are dependent on only x1 and
the functions T, ωm, and ωk are dependent on t and x1.

Thus, for thin shells, the dimension of the heat-conduction equation (1) can be decreased by unity with a suf-
ficient degree of accuracy by eliminating from consideration the spatial variable x3 [9] determining the distance from
the middle surface of the shell to a reinforced layer. For shells of revolution with an axially symmetric reinforcement,
the dimensionality of Eqs. (1) can be decreased by two units by eliminating from consideration not only the variable
x3, but also the variable x2 determining the positions of points on the middle surface in the peripheral direction.

Analysis of Some Solutions. To demonstrate the influence of the reinforcement structure of a shell of revo-
lution on the temperature distribution in it more dramatically, we will consider simple examples, namely, the stationary
axially symmetric problem on the heat conduction in thin shells of revolution of different Gaussian curvature K with
surfaces reinforced with fibers of different orientation.

Let us consider the heat conduction in shells of revolution of the three most characteristic types: first type —
conic shells with a zero Gaussian curvature (K = 0), for which

R (x1) = 

x1 − x1

0
 R1 − x1 − x1

1
 R0



 ⁄ x1

1
 − x1

0
 ; (22)

second type — shells of the type of an elliptic paraboloid of revolution with a positive Gaussian curvature (K > 0), for
which

R (x1) = a √x1 − c  + b , (23)

where

a = (R1 − R0) √x1
1 − c  − √x1

0 − c  
−1

 ;   b = R0 − a √x1
0 − c  ;   c < x1

0
 ; (24)
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third type — shells of the type of a one-sheeted hyperboloid of revolution with a negative Gaussian curvature (K < 0),
for which

R (x1) = √a2 + b2 (x1 − c)2  , (25)

where

a
2
 = R0

2
 x1

1
 − c

2
 − R1

2
 x1

0
 − c

2


 ⁄ 

x1

1
 − c

2
 − x1

0
 − c

2

 ;

b
2
 = R1

2
 − R0

2

 ⁄ 

x1

1
 − c

2
 − x1

0
 − c

2

 ;   c

0
 ≤ c ≤ c

1
 ;

c
0
 = R1x1

0
 − R0x1

1

 ⁄ R1 − R0


 ;   c

1
 = R0x1

1
 + R1x1

0

 ⁄ R1 + R0


 .

(26)

It is assumed that, in relations (22), (24), and (26), x1
1 > x1

0 and R1 > R0; Ri = R(x1
i ), where i = 0, 1; the parameter c

determines the families of shells (23), (25); in this case, at c → −∞, an elliptic-paraboloid shell and, at c → c0 or c1,
a one-sheeted-hyperboloid shell degenerate into conic shells.

The stationary, axially symmetric heat conduction in a shell with an axially symmetric reinforcement and heat-
isolated faces, in which heat sources are absent, has the form (see (21))


H1R

−1
 RH1

−1Λ11T ′

′
 = 0 . (27)

Integration of this equation gives

RH1
−1Λ11T ′ = − Rq1 B − q∗ = const . (28)

If a shell is reinforced with fibers of constant cross section symmetrically relative to its axis, the condition of
constancy of reinforcement cross sections (5) can be integrated:

Rωk cos αk = ω∗k = const ,   k = 1, 2, ..., N , (29)

where the parameter ω∗k determining, with an accuracy to any constant factor, the total area of the cross sections of
the kth fibers [7] is an initial parameter of the problem. (From all the axially symmetric reinforcements of shells of
revolution, the degenerate case of peripheral packing of fibers (αk = π/2) should be set apart; in this case, equality
(29) holds identically at ω∗k = 0 and the function ωk can be arbitrary if the physical restrictions (4) are obeyed).

If the reinforcement directions ωk are known, Eq. (27) and the boundary conditions T(x1
0) and T(x1

1) form, in
combination with expressions (2) and (29), a linear two-point boundary problem and Eq. (28) and the boundary con-
ditions T(x1

i ) and q1(x1
i ) (i = 0 or i = 1) form a linear Cauchy problem on the temperature T, for the solution of which

there are well-developed numerical methods [8, 11].
Let us consider the influence of the reinforcement structure of concrete shells of revolution having identical

characteristic sizes (the length along the rotation axis and the radii of two edges) on their temperature field at identical
boundary conditions. For comparison of reinforcement structures, we will use as a criterion the total consumption of
kth reinforcements, determined as

Ωk = ∫ 
V

ωkdV = 2πH ∫ 
x1

0

x1

1

ωk (x1) R (x1) H1 (x1) dx1 . (30)

We investigated composite metal shells bounded by edges of radius R0 and R1: R1 = 5R0 (x1
0 = 0 and x1

1 =
10R0), made of copper (λm = 400 W/(m⋅K), cm = 419 J/(kg⋅K), ρm = 8940 kg/m3 [12]), which were reinforced with
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steel fibers of two (N = 2) families (λk = 45 W/(m⋅K), ck = 568 J/(kg⋅K), ρk = 7780 kg/m3, k = 1, 2). It will be
assumed that, at the edge x1

0, the temperature T(x1
0) = 300oC and the heat flow R0q1(x1

0) = 5000 W/m.
We now analyze the effect of the following most characteristic reinforcement structures: first-type — meridio-

nal reinforcement: fibers of both families are packed with equal densities along the meridional directions (α1 = α2 =
0); second and third types — spiral reinforcements: fibers are packed along the symmetric meridional directions (α1 =
−α2) at angles α1 = π/6 and α1 = π/3 respectively; fourth, fifth, and sixth types — peripheral reinforcements: fibers
are packed along the peripheral directions (α1 = −α2 = π/2) but with different reinforcement-density distributions ωk;
seventh type — meridional-peripheral reinforcement: the first-family fibers are packed along the meridional direction
and the second-family fibers are packed with a constant density along the peripheral direction (ω2 = const). In addi-
tion, we will consider one more (eighth) type of reinforcement, which is most natural for one-sheeted hyperboloid
shells: fibers are packed along the asymptotic directions [13]

tg αk = (− 1)k √RR′′ ⁄ (1 + R′2)  ,   k = 1, 2 (31)

(in this case, the reinforcement trajectories are rectilinear).
Since the function ωk can be arbitrary in the case of peripheral packing of reinforcements [7], the densities of

the fourth-, fifth-, and sixth-type reinforcements will be determined by the linear law

ωk (x1) = 

x1 − x1

0
 ωk

1
 − x1 − x1

1
 ωk

0

 ⁄ x1

1
 − x1

0
 ,   ω1 (x1) = ω2 (x1) , (32)

(here, ωk
i  = ωk(x1

i ), where i = 0, 1); in this case, it will be assumed that ωk
0 = ωk

1, i.e., ωk = const for the fourth-type
reinforcement, ωk

0 ≠ 0 and ωk
1 = 0 for the fifth-type reinforcement, and ωk

0 = 0 and ωk
1 ≠ 0 (k = 1, 2) for the sixth-type

reinforcement. The values of ω∗k in (29) and ωk
i  in (32) will be selected such that the total number of fibers used (30)

will be equal in all the reinforcement structures considered and, additionally, the maximum total reinforcement density
(Ω = ω1 + ω2) will be not larger than 0.8 (max Ω ≤ 0.8).

Figure 1 shows the temperature distribution in a conic shell, an elliptic-paraboloid shell (c = −0.01R0), and a
one-sheeted-hyperboloid shell (c = 1.5R0) with different reinforcement structures. The numbers of curves 1–7 corre-
spond to the ordinal numbers of the above-described types of reinforcement structures; curve 8 in Fig. 1b corresponds
to the meridional reinforcement structure of an elliptic-paraboloid shell with c = −10R0 (see (23)); curves 8, 9, and 10
in Fig. 1c characterize the temperature distribution in one-sheeted-hyperboloid shells of different geometries (c/R0 =
1.5, 0, and −2) with a reinforcement structure along the asymptotic directions (31).

The comparison of curves 1–3 presented in Fig. 1 allows one to determine the dependence of the temperature
distribution on the direction of reinforcement at one and the same reinforcement density. (Actually, it follows from
(29) that, in all structures reinforced at constant angles different from π/2, the reinforcement density is equal to ωk =
R0ωk

0/R.) For example, the temperature difference at the edge of shells with a meridional (curve 1) and a spiral (αk =
%π/3, curve 3) reinforcement structure (T (1)(x1

1) − T (3)(x1
1)) (hereinafter, the index in parentheses denotes the number

of a curve) comprises 26.5, 15.3, and 109.5oC in a conic shell, an elliptic-paraboloid shell, and a one-sheeted-hyper-
boloid shell respectively.

The comparison of curves 4–6 in Fig. 1 allows one to determine the dependence of the temperature on the
reinforcement density ωk at a constant (peripheral) direction of reinforcement. In this case, the difference T (6)(x1

1)
− T (5)(x1

1) comprises 21.5, 8.7, and 133.9oC respectively in the cases illustrated in Fig. 1a, b, and c.
The comparison of curves 1–6 with curve 7 in Fig. 1 and curve 8 in Fig. 1c shows that the change in both

the direction and density of reinforcement significantly influence the temperature-field distribution in a shell.
The comparison of identical curves 1–7 in Fig. 1 shows that not only the type of reinforcement but also the

geometry of a shell significantly influence the temperature field of this shell. For example, with change from the
meridional reinforcement to the fifth-type reinforcement, the temperature difference at the edges (T(x1

0) − T(x1
1)) of a

conic shell (Fig. 1a) changes from 52oC to 101oC, i.e., the temperature difference at the shell edge x1
1 comprises 49oC

(T (1)(x1
1) − T (5)(x1

1) = 49oC); in an elliptic-paraboloid shell (c = −0.01R0, Fig. 1b), the temperature difference at the
edges increases from 38.5 to 64.5oC and the temperature difference at the edge x1

1 comprises only 26oC; and in a one-
sheeted-hyperboloid shell (c = 1 .5R0, Fig. 1c), the temperature difference at the edges changes from 139.9oC
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(meridional-peripheral reinforcement) to 278.7oC (fifth-type reinforcement) and the temperature difference at the edge
x1

1 comprises 138.8oC.
This significant influence of the type of reinforcement of a shell of revolution on the temperature distribution

in it is apparently explained by the significant influence of the radius R(x1) on the distribution of the heat flow in the
shell. Actually, it follows from (28) that the meridional component of the heat flow in the shells considered is deter-
mined by the formula q1(x1) = q1(x1

0)R0/R(x1) and, if R(x1) < R0, then q1(x1) > q1(x1
0) and, consequently, the tempera-

ture change at the point x1, characterized by the derivative T ′(x1), will be larger than the temperature change at the
edge x1

0 (T ′(x1) > T ′(x1
0)), all other things being equal (see (28)). If R(x1) > R0, then q1(x1) < q1(x1

0) and the tempera-
ture change at the point x1 will be smaller than the temperature change at the edge x1

0 (T ′(x1) < T ′(x1
0)). Consequently,

in the first case, the temperature of a shell changes rapidly by a large value and, in the second case, the temperature
of a shell changes slowly by a small value. For example, in a one-sheeted-hyperboloid shell (c = 1.5R0, see curves
1–8 in Fig. 1c), the radius R(x1) initially decreases from R0 to R(c) with increase in x1 (the value of the parameter c
in (25) determines the positions of points on the throat line of the middle surface of this shell [13]) and then increases
to R1; however, in this case, the values of the radius R(x1) do not exceed R0 in the range x1

0 ≤ x1 ≤ 2c − x1
0 = 3R0.

Therefore, the temperature of the shell considered changes significantly in the indicated range, which influences the be-
havior of curves 1–8 (Fig. 1c). At c = 0 and c = −2R0 (curves 9 and 10 respectively), the throat line coincides with
the edge x1

0 (c = 0) or lies outside of the shell (c = −2R0); therefore, in both cases, R(x1) > R0 at x1 > x1
0, which ex-

plains the more smooth behavior of curves 9 and 10, e.g., as compared to the behavior of curve 8, even though all
three corresponding composites were reinforced along the asymptotic directions. Curve 9 lies somewhat lower than
curve 10 because in the shell to which curve 9 corresponds, the radius R(x1) changes "slowly" in the neighborhood of
the edge x1

0 (R ′(x1
0) = R ′(c) = 0) and in the shell to which curve 10 corresponds, the radius R(x1) changes "rapidly"

in the neighborhood of this edge since R ′(x1
0) > 0. Therefore, the behavior of curves 9 and 10 differs only in the

neighborhood of the edge x1
0 and, at points located at large distances from the edge x1

0, these lines are practically iden-
tical to equidistant lines.

The fact that the temperatures of conic shells (Fig. 1a) and elliptic-paraboloid shells (Fig. 1b) with reinforce-
ment structures 1–7 differ not so significantly than the temperatures of one-sheeted-hyperboloid shells (c = 1.5R0, Fig.

Fig. 1. Temperature-field distribution in a conic shell (a), an elliptic-paraboloid
shell (b), and a one-sheeted-hyperboloid shell (c) at a definite temperature and
a definite heat flow at one of the edges of the shell.
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1c) with the same reinforcement structures is explained analogously. In both conic and elliptic-paraboloid shells, R(x1)
> R0 at x1 > x1

0; therefore, q1(x1) < q1(x1
0) and the temperatures change more smoothly in them than in one-sheeted hy-

perboloid shells in which R(x1) ≤ R0 at x1
0 ≤ x1 ≤ 2c − x1

0 and, as a consequence, q1(x1) ≥ q1(x1
0). The more smooth be-

havior of the curves in Fig. 1b as compared to the curves in Fig. 1a is explained by the same facts. The radius R in
a conic shell changes in proportion to x1 (R ′(x1) = const). In an elliptic-paraboloid shell (c = −0.01R0), R increases
"rapidly" and significantly in the neighborhood of the edge x1

0 (R ′(x1
0) >c→ −0

 +∞) and, in the regions far removed
from this edge, R changes insignificantly, with the result that, even in the neighborhood of the point x1

0, the heat flow
q1 decreases significantly, which explains the smaller temperature difference at the edges of this shell as compared to
that in a conic shell.

It was already noted that an elliptic-paraboloid shell with c → −∞ and a one-sheeted-hyperboloid shell with
c → c0 (see (23)–(26)) degenerate into conic shells; therefore, it is appropriate to follow the change in the temperature
of the indicated shells at c values close to the limiting values at which these shells are close in shape to a conic shell.
For example, curve 8 in Fig. 1b corresponds to a shell with c = −10R0 with a meridional reinforcement structure.
Comparison of this curve with curve 1 in Fig. 1a (conic shell with a meridional reinforcement structure) shows that
the temperatures of the composites considered differ insignificantly and, at the edge x1

1, the difference between them
comprises only 2.7oC; curves 9 and 10 in Fig. 1c correspond to one-sheeted-hyperboloid shells with c = 0 and c =
−2R0, which are reinforced along asymptotic directions (at c → c0 = −2.5R0, such a shell degenerates into a conic shell
and the asymptotic reinforcement directions tend to meridional ones: αk → 0). Comparison of the indicated curves with
curve 1 in Fig. 1a indicates once again that the temperatures in the composites considered differ insignificantly; at the
edge x1

1, the difference between them comprises −13 and −1.4oC respectively. Consequently, when the parameter c in
(23)–(26) tends to a limiting value, the temperatures in an elliptic-paraboloid shell and a one-sheeted-hyperboloid shell,
having corresponding reinforcement structures, tend to the temperature of a conic shell in a downward and an upward
direction, respectively.

The shape of a shell influences its temperature field not only quantitatively but also qualitatively. For exam-
ple, for a conic shell (Fig. 1a) and an elliptic-paraboloid shell (c = −0.01R0, Fig. 1b), to the maximum temperatures
at the edge x1

1 correspond curves 1, 2, and 7, and to the minimum temperatures at this edge correspond curves 6, 4,
and 5 (in decreasing order); for a one-sheeted-hyperboloid shell (c = 1.5R0, Fig. 1c), to the maximum temperatures at
the indicated edge correspond curves 7, 6, and 1, and to the minimum temperatures at this edge correspond curves 4,
3, and 5. Consequently, if any reinforcement structure is best for any shell in certain thermophysical parameters, an-
other reinforcement structure can be best for a shell with a different geometry.

If the requirement of a minimum temperature at the edge x1
1 is used as a thermophysical criterion, as is seen

from Fig. 1, the fifth-type reinforcement structure (peripheral reinforcement with a linear distribution of the density
ωk (32) and the conditions ωk

0 ≠ 0 and ωk
1 = 0) will be best in this sense. If, in addition, the geometry of a shell is

considered, a one-sheeted-hyperboloid shell with the fifth type of applying a winding will be best; in this case, T(x1
1)

= 21.3oC, i.e., room temperature is practically attained.
If the requirement of a maximum total heat

Q = ∫ 
V

CT
^
dV = 2πH ∫ 

x1

0

x1

1

C (x1) T
^
 (x1) H1 (x1) R (x1) dx1 (33)

(the function C is determined from (3)) accumulated by a reinforced shell is used as a criterion of its efficiency, an
elliptic-paraboloid shell with a meridional reinforcement structure (curve 1, Fig. 1b) will be best. A one-sheeted-hyper-
boloid shell with a fifth-type reinforcement (curve 5, Fig. 1c) has the smallest value of Q determined from (33). Con-
sequently, different criteria point to different-geometry shells with different reinforcement structures as most effective.

However, not only the reinforcement structure and geometry of a shell, but also the boundary heat conditions
influence the temperature-field distribution in it. We will demonstrate this by the following example. Let us consider
a one-sheeted-hyperboloid shell with the above-indicated geometric parameters and temperatures T(x1

0) = 300oC and
T(x1

1) = 20oC at both of its edges. Figure 2 presents temperature distributions in such shells with different reinforce-
ment structures (the enumeration of the curves corresponds to that in Fig. 1c). Comparison of the curves in Figs. 1c
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and 2 shows that a change in the boundary conditions leads to both qualitative and quantitative changes in the tem-
perature field of a shell. For example, to the lowest temperatures in the neighborhood of the edge x1

0 corresponds
curve 3 in Fig. 1c and curve 8 in Fig. 2; curves 9 and 10 in Fig. 1c differ significantly from curve 6 in Fig. 2, and
these curves in Fig. 2 differ insignificantly from this curve, and so on. Calculation, by (38), of the total amount of
heat accumulated in one-sheeted-hyperboloid shells (c = 1.5R0) with different reinforcement structures shows that, in
the first example (Fig. 1c), a maximum value of Q is accumulated in a shell with a sixth-type reinforcement structure
and a minimum value of Q is accumulated in a shell with a fifth-type reinforcement structure; in the second example,
a maximum Q is also accumulated in a shell with a sixth-type reinforcement structure and a minimum Q is accumu-
lated in a shell with a third-type reinforcement structure. Consequently, a reinforcement structure that is most effective
at some boundary conditions can be not so effective at other boundary conditions.

Our investigation has shown that the temperature field of fibrous composites such as shells of revolution sub-
stantially depends qualitatively and quantitatively on their reinforcement structure (parameters αk and ωk), the thermo-
physical characteristics of the composite phases (λm and λk, k = 1, 2), the geometry of a shell (R(x1)), and the
boundary heat conditions, which opens up a wide range of ways of searching for effective designs of reinforced com-
posites and their geometries. Problems on the search for the most effective, in thermophysical parameters, reinforce-
ment structures should be formulated individually for different-geometry shells and for different heat actions. Evidently,
the above-described features will also be characteristic of shells with a more complex geometry and in the case of
more complex heat actions than those considered in the present work, which generates a need for developing efficient
numerical and analytical methods for calculating actual reinforcement structures, taking into account their features.

In summary, it may be said that all the conclusions drawn in the present work are true for the case where the
thermophysical characteristics of the phases of a composite are dependent on the temperature; in this case, the sole dif-
ference between the cases considered is that Eqs. (27) and (28) will be not linear but quasilinear and the heat capacity
C in (33) will be dependent on x1 and 7

^
.

This work was carried out with financial support from the Russian Basic Research Foundation (grant 02-01-
00115).

NOTATION

c, parameter determining the geometry of a shell of revolution, m; C, reduced heat capacity of the composite
material of a shell, J/K; cm and ck (k = 1, 2, ..., N), specific heats of the materials of the binding matrix and the kth
reinforcements, J/(kg⋅K); Hi (i = 1, 2, 3), Lamé parameters in the curvilinear orthogonal coordinate system xi, m; K,
Gaussian curvature of a shell, 1/m2; L, parabolic differential operator of the heat-conduction equation (1); N, number
of reinforcing-fiber families; Q, total amount of heat accumulated in a shell, J; q∗, integration constant representing
the product of the meridional component of the heat-flow vector into R, W/m; q1, meridional component of the heat-
flow vector, W/m2; q3, component of the heat-flow vector in the direction x3, W/m2; R, distance from a point of the
middle surface of a shell to its rotation axis, m; R0 and R1, radii of a shell at its left x1 = x1

0 and right x1 = x1
1 edges,

Fig. 2. Temperature-field distribution in a one-sheeted-hyperboloid shell at
definite temperatures at both of its edges.
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m; T, averaged temperature of the composite material of a shell, oC; 7
^

 = T + 273, absolute temperature of the com-
posite material of a shell, K; t, time, sec; T+∞ and T−∞, ambient temperatures on the "outer" and "inner" faces of a
shell, oC; W, reduced power density of the internal heat sources, W/kg; wm and wk (k = 1, 2 , ..., N), power densities
of the internal heat sources in the binding matrix and in the kth reinforcements, W/kg; V, volume of a composite,
m3; x = x1

 ⁄ R0, independent variable along the rotation axis of a shell; xi (i = 1, 2, 3), spatial curvilinear orthogonal
coordinates of points on a shell; x1

0 and x1
1, values of the variable x1 along the rotation axis of a shell which deter-

mine the positions of its left and right edges; y1, y2, y3, Cartesian coordinate system, m; αk (k = 1, 2, ..., N), angle
between the kth reinforcement fiber and the direction x1, rad; Λij (i, j = 1, 2, 3), effective heat-conductivity coeffi-
cients of a shell, W/(m⋅K); λm and λk (k = 1, 2, ..., N), linear heat-conductivity coefficients of the isotropic materials
of the binding matrix and the kth fibers, W/(m⋅K); µ+ and µ−, coefficients of heat exchange between a shell and the
environment on the "outer" and "inner" faces of the shell, W/(m2⋅K); ρm and ρk (k = 1, 2, ..., N), volume densities of
the materials of the binding matrix and the kth reinforcements, kg/m3; Ω, total density of a reinforcement; Ωk (k = 1,
2, ..., N), total consumption of kth reinforcements, m3; ωk (k = 1, 2, ..., N), density of the reinforcement with kth fi-
bers; ωk

0, ωk
1, density of a reinforcement at the edges x1 = x1

0 and x1 = x1
1; prime, ordinary differentiation with respect

to the variable x1; lower index after the radix point, partial differentiation with respect to the time t or with respect to
the corresponding spatial variable xi. Subscripts: m, matrix; c, s, functions representing cofactors of the cosine and
sine respectively; %, values of a function on the "outside" (+) or "inside" (−) faces of a plate.
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